
Zixt: A Quantum-Resistant, Blockchain-
Based Secure Messaging Platform with Zero-
Knowledge Metadata Privacy

Whitepaper
Author: Ryan Huff (@NetworkNerd1337)
Version 1.0.2
April 19, 2025

Abstract
Zixt is a decentralized, secure messaging and authentication platform that leverages a custom
blockchain, quantum-resistant cryptographic primitives, and advanced privacy mechanisms. This
updated whitepaper introduces significant enhancements, including Lyra, a lattice-based zero-
knowledge proof (ZKP) scheme for metadata privacy, DHT encryption with DTLS and
SPHINCS+-based node authentication for secure peer discovery, and the use of CRYSTALS-
Kyber, a quantum-resistant key encapsulation mechanism (KEM), for secure key exchange and
message escrow. By combining SPHINCS+ for authentication, Kyber for key encapsulation, a
multi-node consensus mechanism, and end-to-end encrypted messaging, Zixt offers a robust,
privacy-focused platform resilient to classical and quantum threats.

1. Introduction
The rise of quantum computing and growing privacy concerns in digital communication demand
solutions that ensure security, anonymity, and future-proofing. Zixt addresses these challenges
by integrating a lightweight blockchain with post-quantum cryptography, privacy-preserving
techniques, and secure key exchange mechanisms.

1.1 Problem Statement

• Quantum Threats: Quantum algorithms like Shor’s threaten traditional cryptographic
systems (e.g., RSA, ECC), while Grover’s algorithm impacts symmetric-key systems,
necessitating quantum-resistant alternatives.

• Metadata Privacy: Centralized messaging platforms expose metadata (e.g., sender,
receiver, timestamps), enabling surveillance and communication pattern analysis.

• Centralization Risks: Centralized systems are prone to data breaches, surveillance, and
single points of failure.

• State Persistence: Traditional server-based applications lose in-memory state during
restarts, disrupting user experience.

• Network Security: Peer-to-peer communication in distributed systems, such as
Distributed Hash Tables (DHTs), often lacks encryption and authentication.

• Key Exchange Vulnerability: Classical key exchange protocols (e.g., Diffie-Hellman)
are vulnerable to quantum attacks, risking the security of end-to-end encrypted messages.

1.2 Zixt’s Solution

Zixt provides:

• Quantum-Resistant Security: SPHINCS+ signatures for authentication, Lyra ZKPs for
metadata privacy, and CRYSTALS-Kyber for secure key encapsulation.

• Metadata Anonymity: Zero-knowledge proofs hide message metadata while proving its
validity.

• Decentralized Architecture: A custom blockchain for immutable user identities and
message metadata.

• State Persistence: Multi-node synchronization with leader-based consensus for reliable
state management.

• Secure Peer Discovery: DHT encryption with DTLS and SPHINCS+-based node
authentication.

• Secure Key Exchange and Escrow: Kyber ensures quantum-safe key exchange for end-
to-end encryption and supports time-locked message escrow via smart contracts.

• Privacy and Control: Cryptographic pseudonyms and end-to-end encrypted messaging.

2. System Architecture
Zixt’s architecture comprises a Flask-based user interface, a custom blockchain for data storage,
a peer-to-peer network for state synchronization, and advanced cryptographic mechanisms for
privacy, security, and key exchange.

2.1 Core Components

1. Blockchain:
o Stores user identities (public keys tied to pseudonyms), message metadata as Lyra

ZKPs, and smart contracts for message escrow.

o Each block contains a header (previous block hash, timestamp, nonce) and a
payload (user data, ZKP proofs, or escrow contracts).

o Blocks are cryptographically linked using SHA-256, with SPHINCS+ signatures
for authenticity.

2. SPHINCS+ Integration:
o A stateless, hash-based signature scheme (NIST-standardized in 2022) used for

user authentication, block signing, and node authentication in DHT.
o Key properties: quantum-resistant, deterministic, and stateless, avoiding state

reuse vulnerabilities.
3. Lyra Zero-Knowledge Proofs:

o A lattice-based ZKP scheme for proving metadata validity without revealing
sensitive details (e.g., sender, receiver, timestamp).

o Based on Learning With Errors (LWE), Lyra ensures quantum resistance and
succinct proofs, suitable for blockchain storage.

o Non-interactive via the Fiat-Shamir transform, enabling efficient verification by
nodes.

4. CRYSTALS-Kyber for Key Encapsulation:
o A lattice-based key encapsulation mechanism (KEM) standardized by NIST in

2022, used for quantum-safe key exchange and message escrow.
o Zixt Quantum Key Exchange (ZQKE): Kyber enables cross-platform key

exchange for end-to-end encryption, ensuring security against quantum attacks.
o Message Escrow: Kyber encrypts messages in time-locked smart contracts,

allowing conditional delivery (e.g., “deliver on a specific date”).
o Key properties: quantum-resistant, efficient, and standardized for post-quantum

security.
5. Peer-to-Peer Network with DHT:

o Multiple nodes synchronize blockchain state using a Kademlia-based Distributed
Hash Table (DHT) for peer discovery and block propagation.

o DHT Encryption: Communication is encrypted with Datagram Transport Layer
Security (DTLS) to prevent eavesdropping.

o Node Authentication: Nodes authenticate each other using SPHINCS+
signatures, ensuring only trusted nodes participate.

o A leader-based consensus mechanism ensures agreement on the canonical chain,
with nodes validating blocks using SPHINCS+ signatures and Lyra ZKP
verification.

6. Flask UI:
o Provides a web interface for user registration, login, messaging, and escrow setup.
o Templates are modularized into separate HTML files for maintainability.
o SMTP integration enables email notifications for user actions.

7. Persistence Layer:
o A file-system cache stores blockchain data to optimize performance.
o Database-backed storage ensures uploaded files and user data persist across

restarts.

2.2 Workflow

1. User Registration:
o Users generate a SPHINCS+ key pair and register a pseudonym.
o The public key and pseudonym are recorded on the blockchain.

2. Authentication:
o Users log in by signing a challenge with their SPHINCS+ private key.
o The server verifies the signature against the stored public key.

3. Key Exchange with Kyber (ZQKE):
o Users establish a shared symmetric key using CRYSTALS-Kyber for end-to-end

encryption.
o The key exchange metadata (public keys, encapsulated secrets) is logged on the

blockchain for auditability.
4. Messaging with ZKP:

o Messages are encrypted end-to-end using symmetric keys derived via Kyber.
o A Lyra ZKP is generated to prove metadata validity (e.g., sender/receiver exist,

timestamp is valid) without revealing the metadata.
o The ZKP is stored on the blockchain, while the encrypted message content is

stored off-chain.
5. Message Escrow with Kyber:

o Users can create time-locked smart contracts to escrow messages (e.g., “deliver
on a future date”).

o The message is encrypted with Kyber, and the contract stores the ciphertext,
releasing the decryption key upon meeting the condition.

6. State Synchronization with DHT:
o Nodes use a Kademlia DHT to discover peers and propagate blocks.
o DHT communication is encrypted with DTLS, and nodes authenticate using

SPHINCS+ signatures.
o The leader node resolves conflicts by selecting the longest valid chain.

3. Technical Implementation

3.1 Blockchain Design

The Zixt blockchain is a lightweight, permissioned ledger:

• Block Structure:
• {
• "index": ,
• "previous_hash": ,
• "timestamp": ,
• "nonce": ,
• "data": {
• "type": "user|message|escrow",
• "payload": {
• "pseudonym": ,
• "public_key": ,
• "proof": ,

• "encrypted_message": ,
• "contract":
• }
• },
• "signature":
• }
• Consensus: Leader-based, with the leader elected based on node uptime and chain

length.
• Validation: Nodes verify SPHINCS+ signatures, Lyra ZKPs, and Kyber-encrypted

contracts.

3.2 SPHINCS+ Implementation

• Library: Sourced from liboqs-python.
• Key Generation:
• from sphincs import SPHINCS
• sphincs = SPHINCS()
• private_key, public_key = sphincs.generate_keypair()
• Signing and Verification:
• signature = sphincs.sign(message, private_key)
• is_valid = sphincs.verify(message, signature, public_key)

3.3 Lyra ZKP Implementation

• Library: Simulated in zkp_lyra.py using liboqs-python; real implementation requires
C++ adaptation.

• Proof Generation:
• proof = lyra_zkp.generate_proof(
• statement="valid_user_to_valid_user_at_valid_time",
• witness={"sender": "alice", "recipient": "bob", "timestamp":

1625097600},
• public_inputs={"sender_exists": True, "recipient_exists": True,

"timestamp_valid": True}
•)
• Verification:
• is_valid = lyra_zkp.verify_proof(proof, public_inputs)

3.4 CRYSTALS-Kyber Implementation

• Library: Sourced from liboqs-python, which includes Kyber as a NIST-standardized
KEM.

• Zixt Quantum Key Exchange (ZQKE):
o Users establish a shared symmetric key for end-to-end encryption.

• from oqs import Kem
• kyber = Kem("Kyber512") # Use Kyber512 variant
• pk_a, sk_a = kyber.keypair() # User A generates keypair
• shared_secret, ciphertext = kyber.encapsulate(pk_a) # User B

encapsulates

• # User A decapsulates to get the same shared secret
• shared_secret_a = kyber.decapsulate(ciphertext, sk_a)
• # Use shared_secret for AES encryption
• Message Escrow:

o Messages are encrypted with Kyber and stored in a smart contract for conditional
delivery.

• contract = {
• "recipient": "bob",
• "release_date": "2026-04-17",
• "ciphertext": kyber.encapsulate(pk_bob)[1],
• "signature": sphincs.sign(ciphertext, private_key)
• }
• blockchain.add_contract(contract)

3.5 DHT with Encryption and Authentication

• Kademlia DHT: Used for peer discovery and block propagation.
• DTLS Encryption: Ensures confidentiality and integrity of DHT communication.
• SPHINCS+-Based Node Authentication:
• message = {"node_id": "node1", "action": "lookup"}
• signature = sphincs.sign(json.dumps(message).encode(), private_key)
• if sphincs.verify(json.dumps(message).encode(), signature, public_key):
• process_message(message)

3.6 Flask Application

• Sample Route for Escrow:
• @app.route("/create_escrow", methods=["POST"])
• def create_escrow():
• recipient = request.form["recipient"]
• message = request.form["message"]
• release_date = request.form["release_date"]
• pk_recipient = blockchain.get_user(recipient)["public_key"]
• ciphertext, shared_secret =

kyber.encapsulate(bytes.fromhex(pk_recipient))
• contract = {
• "recipient": recipient,
• "release_date": release_date,
• "ciphertext": ciphertext.hex(),
• "signature": sphincs.sign(ciphertext, private_key).hex()
• }
• blockchain.add_contract(contract)
• return jsonify({"status": "Escrow created"})

4. Security Features
• Quantum Resistance: SPHINCS+, Lyra, and Kyber protect against quantum attacks.

• Metadata Privacy: Lyra ZKPs hide sensitive metadata.
• Secure Key Exchange: Kyber ensures quantum-safe key exchange for end-to-end

encryption.
• Immutability: Blockchain ensures tamper-proof records.
• End-to-End Encryption: Messages are encrypted with AES-256 using Kyber-derived

keys.
• Secure Peer Discovery: DTLS encryption and SPHINCS+-based authentication protect

DHT communication.
• Decentralization: Multi-node setup eliminates single points of failure.
• Auditability: Blockchain allows verification of ZKPs and escrow contracts without

revealing sensitive data.

5. Use Cases
• Anonymous Messaging: Privacy-focused communication with hidden metadata.
• Identity Management: Decentralized, pseudonymous authentication.
• Data Integrity: Immutable logging for audit trails.
• Quantum-Safe Systems: Early adoption of post-quantum cryptography.
• Secure Peer Networks: Encrypted and authenticated peer discovery.
• Conditional Messaging: Time-locked message escrow for scheduled or conditional

delivery.

