
Zixt: A Quantum-Resistant, Blockchain-
Based Secure Messaging Platform with Zero-
Knowledge Metadata Privacy 

Whitepaper 
Author: Ryan Huff (@NetworkNerd1337) 
Version 1.0.4 
April 20, 2025 

 

Abstract 
Zixt is a decentralized, secure messaging and authentication platform leveraging a custom 
blockchain, quantum-resistant cryptographic primitives, and advanced privacy mechanisms. This 
updated whitepaper introduces significant enhancements, including Lyra, a lattice-based zero-
knowledge proof (ZKP) scheme for metadata privacy, DHT encryption with DTLS and 
SPHINCS+-based node authentication, CRYSTALS-Kyber for quantum-safe key exchange and 
message escrow, and the adoption of Practical Byzantine Fault Tolerance (PBFT) as the 
consensus mechanism for robust state synchronization. By combining SPHINCS+ for 
authentication, Lyra for privacy, Kyber for key encapsulation, and PBFT for fault-tolerant 
consensus, Zixt offers a secure, privacy-focused platform resilient to classical, quantum, and 
Byzantine threats. 

1. Introduction 
The rise of quantum computing, growing privacy concerns, and the need for robust 
distributed systems demand solutions that ensure security, anonymity, and fault tolerance. 
Zixt addresses these challenges by integrating a lightweight blockchain with post-quantum 



cryptography, privacy-preserving techniques, secure key exchange, and Byzantine fault-
tolerant consensus. 
 

1.1 Problem Statement 

• Quantum Threats: Quantum algorithms like Shor’s threaten traditional cryptographic 
systems (e.g., RSA, ECC), while Grover’s algorithm impacts symmetric-key systems, 
necessitating quantum-resistant alternatives. 

• Metadata Privacy: Centralized messaging platforms expose metadata (e.g., sender, 
receiver, timestamps), enabling surveillance and communication pattern analysis. 

• Centralization Risks: Centralized systems are prone to data breaches, surveillance, and 
single points of failure. 

• State Persistence: Traditional server-based applications lose in-memory state during 
restarts, disrupting user experience. 

• Network Security: Peer-to-peer communication, such as Distributed Hash Tables 
(DHTs), often lacks encryption and authentication. 

• Key Exchange Vulnerability: Classical key exchange protocols (e.g., Diffie-Hellman) 
are vulnerable to quantum attacks, risking end-to-end encryption. 

• Byzantine Faults: Distributed systems must tolerate malicious or faulty nodes to ensure 
reliable consensus and state synchronization. 

1.2 Zixt’s Solution 

Zixt provides: 

• Quantum-Resistant Security: SPHINCS+ signatures for authentication, Lyra ZKPs for 
metadata privacy, and CRYSTALS-Kyber for secure key encapsulation. 

• Metadata Anonymity: Zero-knowledge proofs hide message metadata while proving its 
validity. 

• Decentralized Architecture: A custom blockchain for immutable user identities and 
message metadata. 

• State Persistence: Multi-node synchronization with PBFT consensus for reliable, fault-
tolerant state management. 

• Secure Peer Discovery: DHT encryption with DTLS and SPHINCS+-based node 
authentication. 

• Secure Key Exchange and Escrow: Kyber ensures quantum-safe key exchange and 
supports time-locked message escrow. 

• Privacy and Control: Cryptographic pseudonyms and end-to-end encrypted messaging. 

2. System Architecture 
Zixt’s architecture comprises a Flask-based user interface, a custom blockchain for data storage, 
a peer-to-peer network for state synchronization, and advanced cryptographic mechanisms for 
privacy, security, and key exchange. 
 



2.1 Core Components 

1. Blockchain: 
o Stores user identities (public keys tied to pseudonyms), message metadata as Lyra 

ZKPs, and smart contracts for message escrow. 
o Each block contains a header (previous block hash, timestamp, nonce) and a 

payload (user data, ZKP proofs, or escrow contracts). 
o Blocks are cryptographically linked using SHA-256, with SPHINCS+ signatures 

for authenticity. 
2. SPHINCS+ Integration: 

o A stateless, hash-based signature scheme (NIST-standardized in 2022) used for 
user authentication, block signing, and node authentication in DHT. 

o Key properties: quantum-resistant, deterministic, and stateless, avoiding state 
reuse vulnerabilities. 

3. Lyra Zero-Knowledge Proofs: 
o A lattice-based ZKP scheme for proving metadata validity without revealing 

sensitive details (e.g., sender, receiver, timestamp). 
o Based on Learning With Errors (LWE), Lyra ensures quantum resistance and 

succinct proofs, suitable for blockchain storage. 
o Non-interactive via the Fiat-Shamir transform, enabling efficient verification by 

nodes. 
4. CRYSTALS-Kyber for Key Encapsulation: 

o A lattice-based key encapsulation mechanism (KEM) standardized by NIST in 
2022, used for quantum-safe key exchange and message escrow. 

o Zixt Quantum Key Exchange (ZQKE): Kyber enables cross-platform key 
exchange for end-to-end encryption, ensuring security against quantum attacks. 

o Message Escrow: Kyber encrypts messages in time-locked smart contracts, 
allowing conditional delivery (e.g., “deliver on a specific date”). 

o Key properties: quantum-resistant, efficient, and standardized for post-quantum 
security. 

5. Peer-to-Peer Network with DHT: 
o Multiple nodes synchronize blockchain state using a Kademlia-based Distributed 

Hash Table (DHT) for peer discovery and block propagation. 
o DHT Encryption: Communication is encrypted with Datagram Transport Layer 

Security (DTLS) to prevent eavesdropping. 
o Node Authentication: Nodes authenticate each other using SPHINCS+ 

signatures, ensuring only trusted nodes participate. 
o PBFT Consensus: Practical Byzantine Fault Tolerance ensures agreement on the 

canonical chain, tolerating up to one-third of nodes being malicious or faulty. 
6. Flask UI: 

o Provides a web interface for user registration, login, messaging, and escrow setup. 
o Templates are modularized into separate HTML files for maintainability. 
o SMTP integration enables email notifications for user actions. 

7. Persistence Layer: 
o A file-system cache stores blockchain data to optimize performance. 



o Database-backed storage ensures uploaded files and user data persist across 
restarts. 

2.2 Workflow 

1. User Registration: 
o Users generate a SPHINCS+ key pair and register a pseudonym. 
o The public key and pseudonym are recorded on the blockchain. 

2. Authentication: 
o Users log in by signing a challenge with their SPHINCS+ private key. 
o The server verifies the signature against the stored public key. 

3. Key Exchange with Kyber (ZQKE): 
o Users establish a shared symmetric key using CRYSTALS-Kyber for end-to-end 

encryption. 
o The key exchange metadata (public keys, encapsulated secrets) is logged on the 

blockchain for auditability. 
4. Messaging with ZKP: 

o Messages are encrypted end-to-end using symmetric keys derived via Kyber. 
o A Lyra ZKP is generated to prove metadata validity (e.g., sender/receiver exist, 

timestamp is valid) without revealing the metadata. 
o The ZKP is stored on the blockchain, while the encrypted message content is 

stored off-chain. 
5. Message Escrow with Kyber: 

o Users create time-locked smart contracts to escrow messages (e.g., “deliver on a 
future date”). 

o The message is encrypted with Kyber, and the contract stores the ciphertext, 
releasing the decryption key upon meeting the condition. 

6. State Synchronization with PBFT: 
o Nodes use a Kademlia DHT to discover peers and propagate blocks. 
o PBFT consensus ensures agreement on the blockchain state, tolerating up to one-

third of nodes being faulty. 
o Nodes validate blocks by verifying SPHINCS+ signatures and Lyra ZKPs. 

 

3. Technical Implementation 

3.1 Blockchain Design 

The Zixt blockchain is a lightweight, permissioned ledger: 

• Block Structure: 

{ 
  "index": <block_number>, 
  "previous_hash": <sha256_of_previous_block>, 



  "timestamp": <unix_timestamp>, 
  "nonce": <pbft_nonce>, 
  "data": { 
    "type": "user|message|escrow", 
    "payload": { 
      "pseudonym": <user_pseudonym>, 
      "public_key": <sphincs_public_key>, 
      "proof": <lyra_zkp>, 
      "encrypted_message": <kyber_encrypted_message>, 
      "contract": <time_lock_details> 
    } 
  }, 
  "signature": <sphincs+_signature> 

} 

• Consensus: PBFT ensures agreement among nodes, tolerating up to ff faulty nodes 
where f<n/3f<n/3 and nn is the total number of nodes. 
 

• Validation: Nodes verify SPHINCS+ signatures, Lyra ZKPs, and Kyber-encrypted 
contracts. 
 

3.2 SPHINCS+ Implementation 
 
• Library: Sourced from liboqs-python. 
• Key Generation: 

from sphincs import SPHINCS 
sphincs = SPHINCS() 
private_key, public_key = sphincs.generate_keypair() 
 
• Signing and Verification: 

 

3.3 Bulletproofs ZKP Implementation 

• Library: Simulated in zkp_bulletproofs.py using Python’s hashlib for SHA-3 
commitments; real implementation requires adaptation of existing Bulletproofs libraries 
(e.g., ZoKrates or Bulletproofs Rust) to use quantum-resistant primitives. 
 

• Quantum Resistance Adaptation: 
o Originally based on elliptic curve discrete logarithm assumptions, Bulletproofs 

are adapted to use SHA-3 hash commitments, ensuring quantum resistance 
(Grover’s algorithm only provides a quadratic speedup, mitigated by larger 
parameters). 
 



• Proof Generation: 
proof = bulletproofs_zkp.generate_proof( 
    statement="valid_user_to_valid_user_at_valid_time", 
    witness={"sender": "alice", "recipient": "bob", "timestamp": 1625097600}, 
    public_inputs={"sender_exists": True, "recipient_exists": True, "timestamp_valid": True} 
) 
 
• Verification: 
proof = bulletproofs_zkp.generate_proof( 
    statement="valid_user_to_valid_user_at_valid_time", 
    witness={"sender": "alice", "recipient": "bob", "timestamp": 1625097600}, 
    public_inputs={"sender_exists": True, "recipient_exists": True, "timestamp_valid": True} 
) 
 

3.4 CRYSTALS-Kyber Implementation 

• Library: Sourced from liboqs-python. 
• Zixt Quantum Key Exchange (ZQKE): 

from oqs import Kem 
kyber = Kem("Kyber512") 
pk_a, sk_a = kyber.keypair()  # User A generates keypair 
shared_secret, ciphertext = kyber.encapsulate(pk_a)  # User B encapsulates 
shared_secret_a = kyber.decapsulate(ciphertext, sk_a)  # User A decapsulates 
 
• Message Escrow: 

 
contract = { 
    "recipient": "bob", 
    "release_date": "2026-04-17", 
    "ciphertext": kyber.encapsulate(pk_bob)[1], 
    "signature": sphincs.sign(ciphertext, private_key) 
} 
blockchain.add_contract(contract) 

3.5 DHT with Encryption and Authentication 

• Kademlia DHT: Used for peer discovery and block propagation. 
• DTLS Encryption: Ensures confidentiality and integrity of DHT communication. 
• SPHINCS+-Based Node Authentication: 

message = {"node_id": "node1", "action": "lookup"} 
signature = sphincs.sign(json.dumps(message).encode(), private_key) 
if sphincs.verify(json.dumps(message).encode(), signature, public_key): 
    process_message(message) 



3.6 PBFT Consensus Mechanism 

• Implementation: 
o PBFT operates in three phases: Pre-prepare, Prepare, and Commit. 
o A primary node (rotated periodically) proposes a new block, which is validated by 

other nodes. 
o Nodes exchange messages to reach consensus, requiring 2f+12f+1 matching votes 

to commit a block, where ff is the number of faulty nodes. 
o Messages are signed with SPHINCS+ to ensure authenticity. 

# Simplified PBFT workflow 
def pbft_consensus(block): 
    primary = select_primary(NODES) 
    if am_primary(): 
        broadcast_pre_prepare(block) 
    upon_receive_pre_prepare(block): 
        if validate_block(block): 
            broadcast_prepare(block) 
    upon_receive_prepare(block, 2 * f + 1): 
        broadcast_commit(block) 
    upon_receive_commit(block, 2 * f + 1): 
        blockchain.chain.append(block) 
 
• Fault Tolerance: Tolerates up to f<n/3f<n/3 faulty nodes, ensuring consensus even with 

Byzantine failures. 

3.7 Flask Application 

• Sample Route for Escrow: 

@app.route("/create_escrow", methods=["POST"]) 
def create_escrow(): 
    recipient = request.form["recipient"] 
    message = request.form["message"] 
    release_date = request.form["release_date"] 
    pk_recipient = blockchain.get_user(recipient)["public_key"] 
    ciphertext, shared_secret = kyber.encapsulate(bytes.fromhex(pk_recipient)) 
    contract = { 
        "recipient": recipient, 
        "release_date": release_date, 
        "ciphertext": ciphertext.hex(), 
        "signature": sphincs.sign(ciphertext, private_key).hex() 
    } 
    blockchain.add_contract(contract) 
    return jsonify({"status": "Escrow created"}) 



4. Security Features 
• Quantum Resistance: SPHINCS+, Bulletproofs (adapted with SHA-3), and Kyber 

protect against quantum attacks. 
• Metadata Privacy: Bulletproofs ZKPs hide sensitive metadata. 
• Secure Key Exchange: Kyber ensures quantum-safe key exchange for end-to-end 

encryption. 
• Immutability: Blockchain ensures tamper-proof records. 
• End-to-End Encryption: Messages are encrypted with AES-256 using Kyber-derived 

keys. 
• Secure Peer Discovery: DTLS encryption and SPHINCS+-based authentication protect 

DHT communication. 
• Byzantine Fault Tolerance: PBFT ensures consensus despite malicious or faulty nodes. 
• Decentralization: Multi-node setup eliminates single points of failure. 
• Auditability: Blockchain allows verification of ZKPs and escrow contracts without 

revealing sensitive data. 

5. Use Cases 
• Anonymous Messaging: Privacy-focused communication with hidden metadata. 
• Identity Management: Decentralized, pseudonymous authentication. 
• Data Integrity: Immutable logging for audit trails. 
• Quantum-Safe Systems: Early adoption of post-quantum cryptography. 
• Secure Peer Networks: Encrypted and authenticated peer discovery. 
• Conditional Messaging: Time-locked message escrow for scheduled or conditional 

delivery. 
• Fault-Tolerant Systems: PBFT ensures reliable operation in the presence of Byzantine 

faults. 


